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Abstract 

Cystic Fibrosis (CF) is a well-known life threatening inherited disease caused by 

mutations in the Cystic Fibrosis Trans Membrane Conductance Regulator gene (CFTR 

gene). Those mutations produce a defect in the encoded CFTR protein that functions 

mainly as a chloride channel and as regulator of other channels. CF patients are 

characterized by progressive lung disease, pancreatic dysfunction, elevated sweat 

electrolytes and male infertility. This study included a total of 73 patients (43 Males / 30 

Females) (60 unrelated) residing in Palestine (West Bank and Gaza) who were clinically 

diagnosed with cystic fibrosis. The aim of the study was to determine the types and rates 

of mutations present in the CFTR gene and to develop allele specific mutation analysis 

test for the most common mutations among Palestinians. This test will make molecular 

testing for CF in Palestine possible and will have a direct impact on a better treatment of 

these patients. Whole blood was collected and DNA from these samples was extracted by 

automated methods. For each patient, PCR amplifications were performed for the coding 

region of the CF gene. Consequently, sequencing by Next Generation Sequencing was 

performed which enabled us to identify the CF mutations present in this cohort. After 

validating these mutations by different methods like Sanger sequencing, we defined a set 

of 18 mutations present in the Palestinian population. In a next step, we designed an easy 

and fast allele specific diagnostic test for 8 of the identified mutations that represent more 

than 80% of the CF mutations found in this population. 
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 ملخص

 

تلك  .CFTR التليف الكيسي طفرات في جين تسببهو  ضى،المرحياة  يهدد خطير شائع و مرض وراثي (CF) التليف الكيسي

تميز مرضى التليف ي. منظم لقنوات أخرى و للكلوركقناة  بشكل رئيسي الذي يعمل الناتج و بروتينالخلل في عن الطفرات تنتج 

  .و العقم لدى الذكور العرق كمية الاملاح في عارتفاالبنكرياس،  خلل في وظيفةب الرئة، مزمنة تصيض امرباالكيسي 

 لا تربطهم منهم 60، إناث 03/ ذكور  43)الضفة الغربية وقطاع غزة   في يقيمون ياً ممنفلسطين مريضاً 73شملت الدراسة 

 موجودة في الجينالتحديد أنواع ومعدلات الطفرات  الىهدف الدراسة ت. التليف الكيسي بمرض سريرياً واصشخممن   (قرابة

وهذا سيؤدي الى تحسين العلاج . الفلسطينيين لدى الأكثر شيوعاً الطفراتلمعرفة  ةجزيئي اتوتطوير اختبارالمسبب للمرض 

 . في فلسطين لتشخيص الصحيح لهذا المرضل ات المتبعةالاختبارات جزءاً من الاختبارهذه  عن طريق جعل

 على PCR عمليةأجريت  ثم. طرق آليةباستخراج الحمض النووي من هذه العينات ضى والمرلازمة من الدم العينات تم جمع 

لدى  موجودةال نا من التعرف على الطفراتمكن لقواعد الامينية ممااترتيب تسلسل  تحديد تم ذلك وبعد. المسبب للمرض الجين

وكنتيجة ، وغيرهاسانجر استخدام طريقة لتحقق من صحة هذه الطفرات مثل لوسائل مختلفة وبعدها تم استخدم . ضىالمرهؤلاء 

جزيئية  اتقمنا بتصميم اختبار خيرةاخطوة و في . الفلسطينيين لدى المرضىموجودة الالطفرات  من 11 لذلك تم التعرف على

 لدى المرضىموجودة ال ٪ من الطفرات10ل أكثر من شكمن الطفرات التي تم تحديدها والتي ت 1 تشخيصل سهلة وسريعة

 .الفلسطينيين
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Chapter 1 

                                                        Introduction 

Cystic Fibrosis (CF) is believed to be one of the most common genetic diseases among Caucasians 

with an incidence ranging from 1 in 2500 to 1 in 3600 [1].This severe and life threatening disease is 

inherited in an autosomal recessive manner and is caused by mutations in the Cystic Fibrosis Trans 

Membrane Conductance Regulator gene (CFTR gene) located on chromosomal region 7q31.2 [2]. A 

CF patient always carries two mutations on both CFTR alleles. The CF patient can carry either an 

identical CFTR mutation (homozygous patient) or two different CFTR mutations (compound 

heterozygous patient).  If the mutation is found on one CFTR allele, the individual is referred to as 

CF carrier. So far, more than 1900 different CFTR mutations have been reported to the Cystic 

Fibrosis Genetic Analysis Consortium (CFGAC)[3] since it was isolated and cloned in 1989 [4]. 

Those mutations produce a defect in the encoded CFTR protein that functions as a chloride channel 

and as regulator of other channels across the epithelial cell membrane.  Such mutations impair water 

movement across epithelia leading to formation of viscous mucus that obstructs the airways of the 

lungs and ducts of the pancreas. CF is characterized by progressive lung disease, pancreatic 

dysfunction, elevated sweat electrolytes and male infertility [5]. The severity and symptoms of the 

disease vary considerably due to different mutations but also modifier genes will play a role.  

The most common mutation which affects about 70% of Caucasians is a three base-pair deletion 

mutation resulting in the deletion of the amino acid phenylalanine at position 508 causing a defective 

intracellular processing of the CFTR protein. This mutation is designated ΔF508 or delta-F508. 

Although the ΔF508 is the most common mutation, all other mutations are less frequent. There is also 

considerable variation of mutation frequencies between different populations worldwide [3].  
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1.1 Historical Background 

 

Cystic Fibrosis was first described and named as “Celiac Syndrome” by the Swiss pediatrician 

Dr. Guido Fanconi in 1936 describing changes in the pancreas seen in children. The first 

definitive description of this disease was given in 1938 by Dr. Dorothy Anderson who called it 

“Cystic Fibrosis” during her work at the Babies’ Hospital in New York.  Later in 1949, Dr. 

Dorothy Anderson discovered that CF was caused by a recessive mutant gene.   

 In 1949, Dr. Charles Lowe reported that CF was a genetic disorder due to its autosomal 

recessive pattern of inheritance assuming that the cause of this disease must be a gene defect [6]. 

Later on, in 1986 Quinton showed that the transportation of fluid and electrolyte in CF patient's 

sweat glands are not normal suggesting CF patients sweat ducts are impermeable to chloride and 

this explained the elevated levels of salt in the sweat of these patients [7]. Soon afterwards in 

1989 the gene responsible for CF disease was identified by Tsui and Collins and colleagues. 

They named it the Cystic Fibrosis Trans Membrane Conductance Regulator gene (CFTR gene), 

although they didn’t have any idea about the protein structure [8].  This new insight in the 

molecular mechanisms involved lead to an improvement in nutritional therapy, antibiotics, chest 

physiotherapy, and earlier diagnosis which have a great effect on raising the median survival age 

of the CF patients who usually die in infancy or early childhood in the 1950's to 37.4 years in 

2007 [9].   
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1.2 CFTR Structure and Function 

 

The main defect in CF is due to an abnormal function of chloride channel protein found in 

epithelial cells. This 1480 amino acid CFTR protein structure suggests that the gene is a part of 

the ATP binding cassette (ABC) gene family which encodes proteins called trans-membrane 

proteins or ABC transporters that get energy from the hydrolysis of adenosine triphosphate 

(ATP) to carry out many different biological processes. For example CFTR down regulates trans-

epithelial sodium (sodium channel) [10], it has also a role in regulating multiple ion channels and 

different cellular processes like potassium and calcium- activated chloride channels, gap junction 

channels, cellular processes involved in mucus secretion and ATP transport, and it has an 

important role in the formation of the plasma membrane [11].  

 

The most common mutation in the CFTR gene is ΔF508 which results in degradation of CFTR 

before it reaches the cell surface, and improper folding of the protein in the endoplasmic 

reticulum. This mutation affects the interaction between the first nucleotide binding domain and 

the first membrane spanning domain regulating CFTR channel gating [12, 13]. The synthesis of 

CFTR, NBDs, R domains, and the membrane-spanning domains may be affected by other 

mutations [14]. 

Although CFTR was initially recognized as a chloride-conductance channel, it is well known that 

the absence of CFTR influences the expression of several other proteins, including important 

proteins in ion transport, cell signaling, and inflammatory responses. These proteins may explain 

the differences in clinical severity among patients with the same mutations since they may be 

included as potential modifiers of the CF phenotype. 
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Figure 1: CFTR Proposed Structure 
 

 

Bottom: CFTR from gene to protein.  

The most prevalent mutation in the 

CFTR gene (ΔF508) a part of Class II 

mutations results in defective protein 

folding in the endoplasmic reticulum 

and premature degradation of the 

protein before reaching the cell 

surface. Mutations of other classes 

may affect the synthesis of CFTR, 

membrane-spanning domains, NBDs 

and R domains.  

 

Top: CFTR structure and activation. 

CFTR consists of two nucleotide-

binding domains (NBDs), two 

membrane spanning- domains, and a 

regulatory domain. 

Activation of CFTR depends on 

phosphorylating of it at the 

Regulatory domain, this occurs after 

through the activation of protein 

kinase A. 

The two nucleotide-binding domains 

regulate the channel activity. 

 The membrane-spanning domains 

consist of six membrane-spanning 

alpha helixes which form the 

chloride-conductance channel. 

ΔF508 mutation occurs on the surface 

of nucleotide-binding domain  
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1.3 Cystic Fibrosis Mutations 

More than 1900 mutations were reported to be associated with the disease; these mutations were 

described in different regions of the gene and in the messenger RNA. CF mutations are classified 

according to the mechanism used to causes the disease as designated in Figure 2 below.  

 

Figure 2: Categories of CFTR Mutations. 
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Classes of defects in the CFTR gene include the absence of synthesis (class I); defective protein 

maturation and premature degradation (class II); disordered regulation, such as diminished ATP 

binding and hydrolysis (class III); defective chloride conductance or channel gating (class IV); a 

reduced number of CFTR transcripts due to a promoter or splicing abnormality (class V); and 

accelerated turnover from the cell surface (class VI). 

Six classes of mutations have been described with classes I, II, and V cause insufficient 

production of the protein, whereas III and IV produce sufficient protein with impaired chloride 

translocation. Class VI provides sufficient protein at the apical membrane, but the protein 

degrades before functioning appropriately.  

Class I, II, III and VI are associated with pancreatic insufficiency (PI) and “classic CF” or 

“severe CF” while Classes IV and V are associated with pancreatic sufficiency (PS) and “mild 

CF”. This clinical distinction based on pancreatic function is somewhat misleading as people 

with classic (PI) CF may have good lung function while those with mild (PS) CF may have 

dreadful lung disease [15].  

The most prevalent mutation ΔF508 (deletion mutation lacking a phenylalanine at position 508) 

is considered to be a class II defect, for this mutation the protein is rapidly misfolded after 

synthesis then it is degraded before reaching its site of action at the cell surface. Other well-

known mutations and important mutations such as N1303K and G85E are considered to be from 

class II which means that they have defective protein maturation (misfolding) and then 

premature degradation. G542X is recognized as class I mutation because there is no protein 

synthesis, this kind of mutations are designated by "X" to say that they have a stopping codon.   

CFTR mutations in the other classes encode full length and well processed proteins, but the 

problem is that these proteins lack normal ion-channel activity. Class III mutations have no or 
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little chloride channel function that result in an abnormal regulation. Class IV mutations are 

believed to show partial chloride channel activity and this explains the milder phenotypes[16], 

class V include mutations that cause reduced number of CFTR transcripts, and class VI include 

mutations that cause unstable CFTR at the cell surface [17, 18].  

 

Table 1: Classes of Different Mutations 

 

Class of 

Mutation 

Molecular defect of 

CFTR Protein 

Examples 

I Defective synthesis  1525-2A → G, 1717-1G → A, 1898+1G → A, 

2184delA, 4010del4,G542X, Q552X, W1282X 

II Defective processing 

and maturation 

A559T, D979A, ΔF508, ΔI507, G480C, G85E, 

N1303K, S549I, S549N, S549R 

III Defective regulation G1244E, G1349D, G551D, G551S, G85E, H199R, 

I1072T, I48T, L1077P, R560T, S1255P, S549(R75Q) 

IV Defective conductance A800G, D1152H,G314E, G576A, G622D, G85E, 

H620Q,I1139V, I1234V, R117H R347H, R347P 

V Reduced function / 

synthesis 

2789+5G → A, 3120G → A, 3849+10kbC → T, 5T 

variant, 711+3A → G, A455E, IVS8 poly T 

VI Accelerated turnover 

from cell surface 

Q1412X 
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1.4 CF in the Arab World 

 

Whereas in Europe and the US CF has been clinically diagnosed since more than 50 years,   CF 

has been increasingly diagnosed in the Middle East during the last two decades, , revealing 

various mutation rates according to the ethnic origin of populations[19]. In addition, Middle 

Eastern societies, particularly Arabs are characterized by close family relationships. The 

tendency for marrying relatives is a common cultural practice despite discouragement of 

consanguineous marriage by major religions.  In these societies genetic disorders are relatively 

frequent particularly autosomal recessive diseases [20]. Population-based surveys in the Middle 

East have found total consanguinity rates between 25% – 65 % and these rates indicate increased 

risk of congenital disorders and recessive inherited diseases. In Palestine, the rate of 

consanguineous marriages was found to be 45% in 2004 [21], indicating that Palestine has a very 

high risk of congenital disorders including CF, but there are no accurate epidemiological data on 

CF. The general impression has been that the disease is rare, but this is most likely the result of 

under-diagnosis or misdiagnosis due to limited awareness of the condition in the region.       

 

Despite that CF used to be considered very rare among Arabs, several research projects have 

documented many Arab families with the classical form of the disease, indicating that CF alleles 

are present in this ethnic group [22-29].  

Limited mutation analysis studies suggest that the distribution of CF mutations in Arabs differs 

from that in Caucasians and that ΔF508 might not be the most frequent CF allele among Arabs as 

is in other populations [22-24].  
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Other studies showed that Arabs carry CF mutations that have never been identified in Caucasian 

CF patients, and there were characteristic mutations among different Arab subgroups mainly 

Muslims, Christians, Druze, Bedouins and minority groups such as  Armenians.  

Concerning Palestinian Arabs, limited number of investigations were done by the Israeli's on 

Palestinians who live in "Israel", and the findings of such  investigations reflect the coexistence 

of numerous communities, which have their own range of mutations, showing little mixing 

between the different groups [28]. 

Table 2 below shows the major mutations in CFTR gene that appear in the Middle East. 

 

Table 2:  Major Mutations in CFTR gene in the Middle East.  
               

 

Country Year of Study Tested 

Patients 

Major Mutations 

Lebanon 2010
1 

221
1 

ΔF508, N1303K, W1282XSX4 

UAE 1994
24 

17 S549R, ΔF508 

Jordan 2007 120 ΔF508, W1282X 

Saudi Arabia 1997
3 

 

 1998
25 

 1999
26 

15 

 

70 

70 

3120+1G→A,N1303K, 1548delG, 

ΔF508, I1234V 

N1303K, R553X, 

 3120+1G→A, S549R 

Israeli Arabs 1999
28

 42 ΔF508, N1303K, 3120+1Kbdel8.6Kb, 

W1282X 

G85E 
Cited references are shown. 

 

There are no published data about the mutations that cause CF nor their frequencies among 

Palestinian CF patients who are living in Palestine.  Therefore, the main objective of this study 

was to detect and identify the various mutations among Palestinian CF patients. This will provide 

the information needed for diagnosing CF and later in establishing a prevention program for it. 
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Chapter 2 

                                                         Objectives 

Reviewing the history of CF in the Middle East revealed that little is known about this life 

threatening disease in this region.  Furthermore, less information is known about CF among the 

Palestinian population.  There is no reliable clinical database registering all CF cases and no 

effective clinical treatment program has been developed. Molecular diagnosis is not available for 

CF patients. Nevertheless, it is extremely important for this region to develop a program to face 

the different risks related to this dangerous disease. Such program will be significant for the 

Palestinian population who has a very high risk to develop autosomal recessive diseases 

including CF due to the high consanguinity rates. 

Therefore, this study has been designed to investigate the nature of pathogenic mutations in the 

CFTR gene and determine their frequencies in the Palestinian population. The identification of 

the mutation spectrum in Palestinian CF patients is essential for the development of reliable 

genetic testing. To achieve this goal, the following objectives have been followed: 

 

1. Samples from non-related CF patients will be collected from all regions throughout Palestine 

West Bank and Gaza.  

2. Molecular characterization and identification of mutations will be performed for all patients. 

3. A mutation spectrum will be defined for most mutations (80%) present in the tested CF 

patients.  

4. Rapid and comprehensive molecular testing will be developed and implemented to detect the 

majority of mutations in CF patients and to be used for screening the population to identify 

carriers.  
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Chapter 3 

Materials and Methods 

3.1 Patients and Sampling 

3.1.1 Patients Selection Criteria 

A total of 73 cystic fibrosis patients (60 unrelated) have participated in this study. There were 59 

% (43/73) male patients and 41 % (30/73) females. Most of the patients were children (< 18 

years old) as shown in Figure 3 below. The patients were distributed throughout the different 

regions of the West Bank and Gaza, Palestine as shown in Table 3. The criteria for inclusion of 

participants in this study were based on previous diagnosis of patients, typical pulmonary and / 

or gastrointestinal tract manifestations and elevated sweat chloride concentrations (> 60 

mmol/L). 

 

 

 

 

 

Figure 3: Pie chart showing the age distribution of patients participated in the study. 

 

 

25% 

27% 25% 

16% 

4% 3% 

Patient's Ages 

ages 0-3 

ages 4-7 

ages 8-11 

ages 12-15 

ages 16-19 

ages above 19 
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Table 3: Geographical Distribution of the Patients 

 

City No. of Patients No. of non-related 

Patients 

Gaza 49 42 

Hebron 18 14 

Qalqilia 1 1 

Jenin 5 3 

Total 73 60 

                            

 

 

3.1.2 Sample Collection and Processing 

Whole blood (3 ml) was collected in EDTA vacutainer tubes (BD) following aseptic technique. 

Samples collected from Gaza in December 2012 were transported immediately to the laboratory 

and stored at -80
o
C to ensure good yield, while samples collected from the West Bank between 

January to February 2013 were stored at -20 ºC. A total of 73 samples were collected from cystic 

fibrosis patients. The ethical guidelines put by Birzeit University were implemented. In addition, 

participation in the project was based on the free will of the participants. A signed consent was 

obtained from each participant and/or the guardian. 

 

3.2 DNA Extraction 

Genomic DNA for all patients was extracted and purified from whole blood by automated 

extraction methods mainly using AUTOPURE LS "Large Sample Nucleic Acid Purification" 

since there was a sufficient quantity of blood (usually more than 1 ml), except for three patients 

the quantity of blood was insufficient to use this method so there DNA was extracted using the 
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QIAamp DNA extraction method that deals with small amounts of blood samples (~0.2 ml of 

blood). 

 For 13 of the patients; DNA was extracted using both methods since the quantity of their blood 

samples were about ~ 1 ml. Therefore, the quantity was divided to make sure that DNA will be 

extracted by one of these two procedures.  

3.2.1 AUTOPURE L S “Large Sample Nucleic Acid Purification” 

The AUTOPURE LS is an automated method for the purification of the DNA from 1-10 ml of 

blood and other DNA consisting samples using the PUREGENE(R) purification chemistry which 

was found by Gentra / Qiagen. This method contains two sets of 50 ml centrifugation tubes 

which can handle up to 16 different samples in each run. The extraction procedure used in this 

research began by adding about 1 ml of each of the blood samples to a 50 ml centrifugation tube 

from the first set of tubes that are distinguished from the other set of tubes by the cab color, then 

40 µl of glycogen is added to a tube from the other set of the 50 ml centrifugation tubes. For each 

tube of blood there should be a tube of Glycogen which is added for its important role in 

increasing the yield of DNA precipitate by alcohol. After adding the samples to the tubes they 

should be introduced to the extraction machine using a barcode system. The automated 

extraction process that is performed by the AUTOPURE system is similar to the manual DNA 

extraction process which consist of several steps that begin by lysing the cell to expose the DNA, 

the next step is removing the unwanted cell contents like membrane lipids, proteins, and RNA by 

adding detergents and other specific enzymes like protease, and finally precipitating the DNA 

with an alcohol. These steps include several times of washing and centrifugation as in manual 

extraction process. The running time of this technique varies according to the program used for 
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extraction, the sample size and kind. In our case using the software method for frozen samples 

the running time of the machine was about 80 minutes for every 16 different samples. 

At the end of each run a DNA pellet is found in each one of the introduced tubes, it should be 

dried for about 10 minutes then dissolved in about 100 µl of DNA hydration solution using a hot 

water path (65 ºC) for 60 minutes and finally the solution should be centrifuged for 3 minutes at 

2000 rpm and 18 ºC to be ready for use.    

 

3.2.2 QIAamp DNA Mini Kit 

DNA of 16 patients was extracted using the QIAamp DNA Mini Kit assay. It is a simple, rapid 

and an easy to follow assay for the extraction and purification of DNA from small quantities of 

blood or body fluids (up to 200 µl) by enzymatic lyses of cells using Proteinase K and then 

passing the lysate through silica-membrane column to purify DNA from other molecules. This 

assay can be automated on the QIAcube which can handle up to 12 samples per run. 

 

3.3 Determination of DNA Quality 

DNA quality for each sample was determined by different methods; these methods are discussed 

below: 

 

3.3.1 DNA Concentration 

DNA concentration was measured using DropSense96 (Trinean) which can read up to 96 

samples in 5 minutes. DropSense96 is a state of the art spectrophotometer that determines the 

concentration of DNA after absorbing ultraviolet light at 260 nm wavelength. 

The DNA concentration and purity of all the patients were measured except for three patients 

who had little volume of blood and there DNA was extracted using QIAamp procedure. The 
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concentration of DNA extracted by QIAamp method is usually not measured since it is very low 

to be detected, and it is always considered to be about 25 ng / µl so when used it is not diluted. 

The measurement of the concentration and purity of a DNA sample is very simple and easy, it 

just need the loading of a special plastic chip which can handle 16 samples with a 2 µl of each 

DNA sample then introduce the  special plastic chip to the DropSense96 equipment which 

analyze the samples as described previously. 

 

3.3.2 DNA Purity 

DNA Purity was also measured using spectrophotometric analysis. Absorbance measurements 

made on the Trinean DropSense96 calculates the ratio of UV light absorbance at 260 nm and 280 

nm wavelengths to determine the purity of DNA, since proteins and other contaminants absorbs 

uv light at or near the 280 nm wavelength range, it is easy to realize from the A260/A280 ratio 

the presence of several contaminants especially proteins. 

"Pure" DNA is indicated by the A260/A280 ratio of ~1.8, and A260/A280 ratio range of 1.6 – 2.0 

indicates a good quality DNA, lower ratios indicates the presence of more contaminants, but this 

does not refer that the DNA is unsuitable for any application. Purity and concentration are 

measured simultaneously, and both of them are measured using the same procedure.  

 

 

3.3.3 DNA Quality Test by PCR 

 

The DNA quality was checked by amplifying DNA fragment using PCR "polymerase chain 

reaction". Amplification was performed with 2.5 μl of the purified DNA template in a total of 10 

μl reaction mixture. The complete mix constituted of the following components: 5 μl of 2X 

KAPA2G Robust Hot Start ready Mix, 1.25 μl upstream primer (0.1μM), and 1.25 μl 
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downstream primer (0.1μM), and Primers used for PCR amplification are CFTR – 13 Assay 

primers listed in Table 1 - Appendix I. 

The amplification conditions were as described in Table 4for FORD PCR program. The LabChip 

GX (PerkinElmer) capillary electrophoresis was used to assess PCR product which is CFTR – 13 

Assay Amplicon.   

 
3.4 Polymerase Chain Reaction (PCR) of the CFTR Gene Coding Region 

PCR reactions consisted of 20 – 40 thermal cycles to amplify DNA fragments of 0.1 – 10000 

base pairs length, each cycle consisted usually of three different temperature steps. First was the 

Denaturation step where the reaction is heated to 95 ˚C for 20-30 seconds, this high temperature 

caused melting of the DNA template by breaking the hydrogen bonds between the 

complementary bases, forming single stranded DNA. The second step was the Annealing step in 

which the temperature is lowered to around 60 ˚C for 20 – 40 seconds allowing the attachment of 

the primers to the single stranded DNA template forming new stable hydrogen bonds between 

the primers sequence and the DNA template sequence, the DNA polymerase binds to the new 

formed hybrid and initiate the DNA synthesis. The third step was the Elongation step in which 

the temperature depends on the optimum temperature for the DNA polymerase activity, between 

70-80 ˚C. At this step the DNA polymerase adds new nucleotides to the newly synthesized DNA. 

Elongation time depends on the type of DNA polymerase used and the length of the amplified 

DNA fragment.  

There final step of the PCR is two step procedure, the first one is an elongation for 5-15 minutes 

to make sure that all the single stranded DNA are elongated. The second step is the final hold, in 

which the temperature is lowered to 4 – 15 ˚C for an indefinite time, and this step can be 

considered as short term storage for the reaction. 
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The PCR machine that used in this project was the 2720 Thermal cycler (Applied Biosystems). 

Different PCR programs were used in this research and they are all shown in Table 4 below. The 

CFTR gene was divided according to the transcript (ENST00000003084) to 27 exons. This 

transcript was used to form 28 different assays used to amplify each exon of the CFTR gene. For 

each patient 28 different PCR reactions were performed using FORD program to amplify all the 

exons as a preparative step prior to the DNA sequencing. The details for each assay are found in 

Table 1- Appendix I, and the amplification procedure is the same as the one used previously to 

test for DNA quality. PCR products were electrophoresed using the capillary electrophoresis 

instrument the LabChip GX (PerkinElmer – USA). 

 

Table 4: PCR Programs 

 

 Program 

 Ford (35 cycles) CF62 (34 cycles) CF55 (34 cycles) 

Step Time Temp. Time Temp. Time Temp. 

Initial 

Denaturation 

3 min  95
o
 C 5 min  95

o
 C 5 min  95

o
 C 

Denaturation 15 sec 95
o
 C 30 sec 95

o
 C 30 sec 95

o
 C 

Annealing 10 sec 60
o
 C 30 sec 62

o
 C 30 sec 55

o
 C 

Elongation 15 sec 72
o
 C 30 sec 72

o
 C 30 sec 72

o
 C 

Terminal 

elongation 

1 min 72
o
 C 10 min 72

o
 C 10 min 72

o
 C 
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3.5 INNO-LIPA CFTR  

INNO-LIPA CFTR (Innogenetics, Ghent, Belgium) is the most comprehensive multi-parameter 

assay that provides simultaneous detection and identification of 36 of the most frequent CFTR 

mutations and their wild-type sequences in the Caucasian population. This assay is based on the 

reverse hybridization technology in which probes are coated on strips of a nitrocellulose 

membrane as parallel lines, and these probes are ready to hybridize specifically with their 

complimentary sequences. This leads to the detection of   point or multiple base pairs mutations, 

deletions or insertions. The advantage of this assay is that it is rapidly performed and easily 

processed in a manual or an automatic way. This method is sensitive and highly specific. 

The INNO-LIPA assay consists of three steps: 

1- DNA extraction and purification.  

2- Amplification of target DNA by PCR. 

3- Detection of the specific hybrids on the reverse hybridization strips. 

 

 

 

Figure 4: Principle of reverse hybridization with the probe firmly anchored to the membrane 
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The interpretation of the results is easy and based on a visible hybridization pattern. The analysis 

of both the wild-type and the mutant sequences identifies heterozygosity or homozygosity of 

each tested mutation, and thus differentiates between carriers and patients. Figure 5 demonstrates 

how the strips of the assay appear and it shows the two kinds of strips (CFTR 17 + Tn & CFTR 

19) which together detects 36 different CF causing mutations. The first two strips in the figure 

indicate "No Mutation" so the bands appear on the strips are the wild type bands. The second two 

strips indicates a homozygous ΔF508 patient and it is apparent that the CFTR 19 strip has a band 

for the mutation in the upper side of the strip (mutant side) and this band disappeared from the 

lower part of the strip (wild type side). The third and fourth sets of strips show a compound 

heterozygote mutation in two different patients. In these mutations two bands appear for each 

mutation on both sides of the strip (mutant and wild type). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  INNO-LIPA CFTR Strips. 

 



32 
 

 

In this project the INNO-LIPA CFTR assay was performed for the15 patients whose CF 

mutations were previously determined as shown in Table 5.  DNA of these patients was 

amplified according to the instructions of the INNO-LIPA CFTR kit and processed automatically 

using the AUTO-LIPA 48. 

 

 

 

Number 

 

Patient CF Mutation 

1
st
 allele 

CF Mutation 

2
nd

 allele 

Region 

1 OE - 3 c.1209+1G→A c.1209+1G→A Gaza 

2 OE - 4 Δ F508 Δ F508 Gaza 

3 OE - 10 Δ F508 Δ F508 Gaza 

4 OE - 13 Δ F508 Δ F508 Gaza 

5 OE - 18 W1282x Unknown Gaza 

6 OE - 19 Δ F508 Δ F508 Gaza 

7 OE - 21 Δ F508 Δ F508 Gaza 

8 OE - 25 Δ F508 W1282X Gaza 

9 OE - 31 Δ F508 Unknown Gaza 

10 OE - 32 Δ F508 G542X Gaza 

11 OE - 33 Δ F508 Δ F508 Gaza 

12 OE - 37 W1282X Unknown Gaza 

13 OE - 44 W1282X Unknown Gaza 

14 OE - 50 N1303K N1303K West Bank 

15 OE - 53 G85E N1303K West Bank 

 

Table 5: Patients with previously determined CF Mutations  

 

 

 

http://www.innogenetics.com/prodview.asp?id=11
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3.6 ΔF508 Mutation Detection by Heteroduplex Analysis  

 

The ΔF508 mutation located in exon 11, is a three bp deletion between nucleotides 1652 and1655 

- see Figure 7. These nucleotides constitute the codon for phenylalanine (F) at position 508. This 

kind of mutation can be detected by several methods.  However, one of the easiest methods to 

analyze this mutation is the heteroduplex analysis method which is based on the formation of a 

heteroduplex DNA from complementary but non identical DNA strands. This occurs when the 

DNA double helix denatures and anneals again with another complementary DNA strand. When 

the heteroduplex DNA contains a mutation, a mismatch will be generated at one or more base 

pair positions as shown in Figure 6. This mismatch will appear as a kink or a bend in the DNA 

structure that will have reduced mobility during electrophoresis. This method allows the 

detection of mismatches as heteroduplex DNA which migrates slower than homoduplex DNA. 

 

 

 

 

 

 

 

Figure 6: Heteroduplex Analysis. Annealing mutant and wild type DNA generate heteroduplexes 

with one or more mismatched bases (heteroduplexes), mismatching causes the double helix to 

have conformation change that hinders its mobility during electrophoresis. 
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Figure 7: ΔF508: A deletion mutation within CFTR gene.  

 

3.6.1 Heterozygote Mutation Analysis 

Mutation analysis based on heteroduplex formation requires first a PCR reaction performed 

using the FORD program (Table 4) to amplify exon 11(Table 1 – Appendix I) for all patients. 

The amplification procedure is described previously (testing DNA quality). As a result of this 

amplification heteroduplexes are detected in patients who are heterozygous carriers of theΔF508 

mutation. 
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3.6.2 Homozygote Mutation Analysis 

For the detection of homozygote mutations, analysis can be performed as described for 

heterozygote mutation analysis. However to detect these homozygous mutations forΔF508, the 

DNA of all patients needs to be mixed with wild type DNA to form a heteroduplex between the 

wild type DNA and the homozygous mutant DNA. Then capillary electrophoresis analysis by 

LabChip GX (PerkinElmer) is performed to visualize the homozygote mutations.  

3.7 Next Generation Sequencing (NGS) of the PCR Products 

Next generation sequencing is a new developed sophisticated method to sequence DNA in an 

easy, automated and rapid manner that is relatively cost effective. 

In this project, NGS sequencing was used to identify the mutations in the CFTR gene in a set of 

74 CF patients (60 unrelated).The sequencing machine that was used is the "MiSeq" 

(Illumina).This massively parallel sequencing technology based on a reversible dye-terminators 

technology [30].  

The main concept of this method is the formation of "DNA Clusters". This involves the 

attachment of DNA molecules and primers on a slide and then amplified with polymerase. This 

is followed by the determination of the sequence in which four different types of reversible 

terminators bases are used. Nucleotides that are incorporated are washed away.  

The fluorescence generated by excitation with a LASER is captured by a camera and then the 

DNA is removed from the dye and the terminal 3' blocker to allow the next cycle to begin. In this 

process DNA chains are extended one nucleotide at a time in conjunction with imaging of the 

nucleotide addition which can be performed at a delayed moment, and this allows the capture of 

successive images for very large arrays of DNA colonies from a single camera. The instrument 
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throughput depends on the number of cameras used and the camera conversion rate. Nowadays the 

throughput of this instrument can be multiplies of one million nucleotides per second, this means that 

one human genome equivalent can be sequenced within one hour using one instrument equipped with 

one camera [31]. 

To perform the NGS for all patients, the PCR products of the 28 CFTR assays (27 exons) were 

pooled together by taking 2 µl from each PCR product to have a total of 56 µl. Then the PCR pools 

were checked by performing capillary electrophoresis using LabChip GX (PerkinElmer). Since the 

electrophoresis results were adequate, calculations were performed to dilute the samples so that they 

can be introduced to the "MiSeq" for Next Generation Sequencing (Illumina). Data interpretation is 

carried out by comparing all the detected variants in the CFTR gene with an up-to-date database, and 

then a human interpretation is performed to decide whether the detected variants can be considered as 

disease causing or not.  Figures 12, 13 and 14 – Appendix II show some examples of "Miseq" results.  

Figure 8: A diagram of the Illumina sequence by synthesis next-generation sequencing platform. 
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3.8 Confirmation of Identified Mutations by Sanger Sequencing 

 

Sanger sequencing is a DNA sequencing method in which DNA is replicated by selectively 

adding chain terminating dideoxy-nucleotides by DNA polymerase [32]. This sequencing 

method was the most widely used method for about 25 years. In spite of the new developments 

in sequencing technology, Sanger sequencing is still widely used especially for small scale 

projects and to confirm results obtained by NGS analysis.  

To perform sequencing using Sanger method, in addition to the normal requirements of any PCR 

reaction (DNA primer, DNA polymerase, normal nucleotides; deoxy nucleotide triphosphates 

dNTPs, Single stranded DNA template), modified dideoxy nucleotides (ddNTPs) are essential to 

terminate the DNA strand elongation. These modified nucleotides can't form a phospho-diester 

bond between two nucleotides because they lack a hydroxyl group (OH) on their 3' position 

where the addition of the next nucleotide occurs. This fact stops the DNA elongation process 

because DNA polymerase can't function any more in the presence of such an incorporated 

nucleotide. 

In order to sequence DNA in a sample using this method, the sample should be divided into four 

separate sequencing reactions, each reaction should contain DNA polymerase, DNA primer, the 

four normal dNTPs (dATP, dGTP, dCTP and dTTP) and only one of the four dideoxy-

nucleotides (ddATP, ddGTP, ddCTP, or ddTTP). After several rounds of DNA template 

extension, the DNA fragments resulted from the reaction are denatured and separated according 

to their size using gel electrophoresis for each one of the four different reactions, the different 

lengths of the DNA fragments appear as dark bands in one of the four lanes which indicates one 

of the ddNTPs reactions, the length of the DNA fragment will depend on the position where the 

http://en.wikipedia.org/wiki/Dideoxynucleotides
http://en.wikipedia.org/wiki/Dideoxynucleotides
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dideoxy nucleotide (ddNTP) binds and terminates the chain. DNA sequence is obtained by 

reading the relative position for the different bands from bottom to top among the four lanes.  

The ddNTPs may be tagged using a fluorescent or radiolabeling, this labeling allowed to 

automate the sequencing process and made it easier, faster, and cost effective.   

In this study, most of the mutations that were determined using NGS method were verified and 

validated by the Sanger Sequencing method. To interpret the data obtained from Sanger 

sequencing, the sequence was introduced to a program called "SeqScape" which helps to locate 

any variant in the sequenced DNA fragment after comparing it with a reference sequence.                                                            

Some examples of these interpretations can be found in Appendix II – Figures 8-11. 

 

Figure 9: Schematic diagram of Sanger Sequencing Method 
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3.9 Allele Specific Mutation Analysis (ASMA) 

 

Allele specific mutation analysis is a diagnostic technique used to detect single nucleotide 

variants. This technique requires previous knowledge of the tested DNA sequence. To detect the 

single nucleotide variations, primers are designed and amplified with the suspected DNA under 

suitable conditions. If amplification with the mutant primer is performed and result in the 

expected length of the DNA band on gel (if gel electrophoresis is used) the mutation is present, 

whereas in case the wild-type primer is used, no band should be observed for patients with a 

homozygous mutation. Figure 10 shows the two allele specific primers that are used to detect a 

mutation. If an amplified product is observed with the mutant primer as well as with the normal 

primer, the mutation is present as a heterozygous state. 

Figure 10: Allele Specific Mutation Analysis 
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This allele specific mutation analysis was developed to be used as a diagnostic method to detect 

the most prevalent mutations among Palestinians. All these mutations were identified by NGS 

sequencing. An example of the results is shown in Figure 15 – Appendix II.  Table 6 below 

shows the primers designed to detect each of the mutations. 

 

Mutation Forward Primer Reverse Primer PCR 

Prog. 

R347P TCATTCTGCATTGTTCTGCG 

TCATTCTGCATTGTTCTGCC 
GCACATTTTTGCAAAGTTCA Ford 

2183A 

A →G 
CTCCTGGACAGAAACAAAAAAA 

CTCCTGGACAGAAACAAAAAG 

CTCTTCGATGCCATTCATTTGTAA CF 62 

W1282X TGTGCAACAAGGTTTGAATGA TCACTCCAAAGGCTTTCCTC 

TCACTCCAAAGGCTTTCCTT 

CF 55 

R75X ACTCATTAATGCCCTTCGGC 

AACTCATTAATGCCCTTCGGT 

TTTGGAGTTGGATTCATCCTTT CF 62 

N1303K AGAACTTGATGGTAAGTACATG ACTGTTCATAGGGATCCAAG 

ACTGTTCATAGGGATCCAAC 

Ford 

G85E GAAATAGGACAACTAAAATATTTGCAC CTTACCCCTAAATATAAAAAGATTC 

CTTACCCCTAAATATAAAAAGATTT 
Ford 

1525- 

1G→A 

TAATAATGATGGGTTTTATTTCCAG 

TAATAATGATGGGTTTTATTTCCAA 
GTGAAGGGTTCATATGCATAATCAA CF 62 

3120+1K 

bdel8.6Kb
33 

AACCAGACTGTCAGTTTGCCTCAT AATGCCCATAAACACCCAGGAAAG CF 62 

 

Table 6: Primers and PCR programs used to detect different CFTR mutations  

For exon 19, 20 and 21 deletion mutation (3120+1Kbdel8.6Kb) see reference [33]
 

 

 

For exons 19, 20 and the 21 deletion mutation (3120+1Kbdel8.6Kb), the primers used were 

obtained from published literature [33]. PCR amplification can detect the deletions only when 

the breakpoint sites of these deletions are known. 
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3.10 Multiple Ligation-dependent Probe Amplification (MLPA) 

MLPA is a multiplex PCR method used to detect abnormal copy numbers of genomic DNA 

sequences [30]. This technique is one of the easiest and fastest techniques performed to detect 

whole gene deletions/duplications but also partial gene deletions or duplications can be detected. 

This technology requires a PCR machine and capillary electrophoresis equipment. SALSA 

MLPA Kit from MRC-Holland is used for this technique. The type of mutations detected by this 

technique are usually missed with other techniques such as conventional DNA sequencing. 

There are four major steps in the MLPA reaction; the first step is the denaturation of the DNA by 

overnight incubation with a mixture of MLPA probes that consist of two separate 

oligonucleotides (each contains one of the PCR primers). The overnight incubation allows the 

two probes to hybridize to adjacent target sequences (Figure 11 - step 1). The second step is the 

ligation reaction in which the two probe oligonucleotides are ligated after being hybridized to 

their adjacent targets (Figure 11 - step 2).The third step is a PCR reaction in which ligated probes 

from the previous step will be amplified exponentially and the number of the target sequences in 

the sample is measured by the number of probe ligation products because any probe that  is not-

ligated in the second step will not amplify in this step and therefore the removal of these probes 

is unnecessary because they will not generate a signal in the separation step (Figure 11 - step 

3).The fourth step is the separation of the PCR products by capillary electrophoresis (Figure 

11step 4). Finally, data is analyzed by comparing the peak pattern obtained by electrophoreses 

with   reference samples and thus difference can be detected.   
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Figure 11: MLPA reaction; the MLPA probes should be hybridized to the target 

sequence. Then a single pair PCR primers is used for MLPA amplification in a 

multiplex PCR. The resulting PCR products of the MLPA kit range between 130 - 480 

nucleotides in length and they can be analyzed by capillary electrophoresis. 
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Chapter 4 

Results 

 

4.1 DNA Quantity and Quality 

The quantity and the quality of extracted DNA were determined by Dropsense 96 (Trinean). 

Although we obtained for all samples a sufficient yield of DNA, our results showed that the 

amount of DNA recovered from samples stored at -80 ºC was larger (mean = 517.1ng/µl) than 

those stored at -20 ºC (mean = 189.3ng/µl) respectively. For the purity of the extracted DNA, 

most of the samples have good quality DNA since the ratio ranged between an OD of 1.6 – 2.0. 

On the other hand, some DNA samples (OE-28, 32, 43, and 55) gave results lower than 1.6 

indicating the presence of contaminants. However, this didn't indicate that those DNA samples 

are unsuitable for use. The results of quantity and quality measurements are shown in Table 2 in 

Appendix I. 

The quality of the DNA was also assessed by PCR (for the exons of the CFTR gene) and the 

amplicons were checked by capillary electrophoresis. The results showed that the DNA for all 

samples tested have good quality indicated by sharp bands at 436bp as shown in Appendix II 

Figure1. 
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4.2 INNO-LIPA CFTR 

The INNO-LIPA test is a genetic method that can detect 36 mutations on the CFTR gene and 

wild type simultaneously by reverse hybridization. The DNA probes for the 36 mutations are 

coated on 2 strips. The results of the INNO-LIPA test are interpreted according to the appearance 

and/or absence of bands on the test strips. For homozygous mutations, a band appears in the 

mutation area but disappears from the normal (wild type) non-mutated area. For heterozygous 

mutations, the band will appear in both areas; the mutated and the wild type.  The results of 

INNO-LIPA are shown in Figures 2 and 3 (Appendix II). The purpose of using this method was 

to confirm previously diagnosed patients on one hand and to assess the possibility of adopting 

this technique to identify the mutations that may be present on the CFTR gene of CF patients in 

Palestine.  

Table 7: INNO-LIPPA Test Results. 

 
1. Tests done at foreign labs. 

2. Indicate discrepancies between the results  

 

Patient 

number 

Mutation Identified in 

Palestine 

INNO-LIPPA Sequencing 

OE-3
1 

c.1209+1G→A/ c.1209+1G→A Not detected c.1209+1G→A/ c.1209+1G→A 

OE-4 Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-9
2 

Δ F508/ Δ F508 2183AA→G/2183AA→G 2183AA→G/2183AA→G 

OE-13 Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-18
2 

W1282X/???   Not detected c.3793G→A/ c.3793G→A 

OE-19 Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-21 Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-25
2 

Δ F508/W1282X Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-31
2 

Δ F508/??? Not detected Not detected 

OE-32
 

Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-33 Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 

OE-37
2 

W1282X/??? R347P/R347P R347P/R347P 

OE-44
2 

W1282X/??? Not detected Not detected 

OE-53
1 

G85E/N1303K N1303K / G85E N1303K / G85E 

OE-56
1 

Δ F508/ Δ F508 Δ F508/ Δ F508 Δ F508/ Δ F508 
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Table 7 summarizes the type of mutation detected for each patient as compared with tests 

conducted in Palestine and the reference results by sequencing. The foreign laboratories are 

mostly Israeli’s, these labs performed molecular diagnostic tests to identify some CF mutations.   

It is remarkable that for the 12 patients tests performed in local laboratories only 20 mutations 

were identified. Inaccurate results have been reported in 40% of the cases (8/20) reflecting a 

considerable rate of errors. It was found that INNO-LIPPA test can detect 8 of the 18 mutations 

identified among the Palestinian population which represent 66 % of the identified mutations as 

shown in Table 4 – Appendix I.    

 

4.3 ΔF508 Mutation Detection by Heteroduplex Analysis  

Heterozygote and homozygote mutation analysis 

During electrophoresis, a patient heterozygote ΔF508 will form a heteroduplex between the wild-

type strand and the mutant strand. This DNA fragment will migrate slowly and will show a 

different band as shown for patients OE 24, OE 26, OE 32, and OE 59 in Figure 4 (Appendix II) 

and Table 3 (Appendix I). 

To detect the homozygote ΔF508 patients, PCR products were amplified using CFTR 13 assay 

primers, after mixing their entire DNA with wild type DNA to artificially form a heteroduplex. 

The same visualization method can be used as described above. Homozygous mutations were 

identified for patients (OE1, OE2, OE 4, OE 11,OE 13, OE 19, OE 21, OE 25, OE 33, OE 56,  

OE 58, OE60, and OE 62).  Figure 5 (Appendix II) shows all the heteroduplexes formed              

(Homozygous and heterozygous ΔF508 carriers).  
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4.4 Polymerase Chain Reaction (PCR) of the Coding Region of the CFTR Gene 

For each patient 28 assays were used to amplify the 27 exons of the CFTR gene; these assays 

were designated as CFTR – 3 to CFTR – 30. To check the quality of these assays, capillary 

electrophoresis was performed on two assays randomly chosen for each patient. 

The electrophoresis results showed that assays 16, 18 and 22 were not acceptable. Therefore, the 

PCR for these assays was repeated and optimized using different DNA concentrations. 

Subsequent capillary electrophoresis showed that the results were acceptable. The results are 

shown in Figures 6.1, 6.2, and 7 (Appendix II)  

 

4. 5 Next Generation sequencing (NGS) of the PCR Products 

The Next Generation Sequencing method (MiSeq System, Illumina) was used to sequence all 27 

exons of the CFTR gene. This method is automated and rapid. It can simultaneously analyze and 

interpret the data by comparing all detected variants in the gene with an up-to-date database. 

Subsequently, human interpretation is required to check the variants detected by the instrument 

to decide whether these variants are CF causing mutations or not. Since this method gives rise to 

a very huge amount of data, many different programs are used to help in interpreting this data. 

One of the used programs is "Alamut" program which helps in recognizing the influence and the 

pathogenicity of any mutation.  

Most of the exons for all patients had enough coverage to do a reliable interpretation of the 

sequencing data. Sequencing of CFTR genes of all patients and identifying the deletion regions 

of this gene allowed us to detect 16 different mutations distributed over 81alleles (41patients); 

these mutations are shown in Table 8 below. All mutations in the different patients identified by 
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NGS are listed in table 3 (APPENDIX I). Several mutations (for examples ΔF508) were 

confirming the INNO-LIPA results or the heteroduplex analysis, where one of these 16 mutations 

was not identified before. 66 alleles (33 patients) were homozygous, 14 alleles (7 patients) were 

compound heterozygous, and 1 allele (1 patient) was even heterozygous. Remarkable was the 

fact that for patient OE51 and OE52 no reads for exon 2 were identified, whereas for all other 

patients this exon was nicely covered. As no mutations in the other exons were found in those 

two family-members, this result was very suggestive for a deletion of exon2 and this was 

confirmed by MLPA. Further PCR analysis revealed also a deletion of other exons in the CFTR 

gene, which were identified by designing primers flanking the deletion mutation 

3120+1Kbdel8.6Kb (deletion of exons 19, 20 and 21); we were able to visualize this mutation 

after PCR amplification and electrophoresis. We were able to detect the deletion in 9 alleles. 

Figures 16, 18, and 21 - Appendix II show capillary electrophoresis and MLPA results for exons 

19,20 and 21deletion detected by these methods, and Table 3 - Appendix I shows all the results 

derived from these methods.   
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Table 8: Detected Mutations 

 

       

Mutations designated by * were not identified by this method. For the NGS results Table 3-

Appendix I shows them and show the other tests to confirm them. 

 

 

 

 

 

Legacy Name c.DNA Name Exon or Intron # Class 

ΔF508 c.1521_1523delCTT  Exon 11 2 

3120+1Kbdel8.6Kb
* 

----- Del exons 19,20,21  

1525- 1G →A c.1393-1G→A Intron 10 -  Exon 11  

G85E c.254G→A Exon 3 2 

2183AA→G c.2051_2052delAAinsG Exon 14 1 

1717-1G→A c.1585-1G→A Intron 11 - Exon 12 1 

N1303K c.3909C→G Exon 24 2 

W1282X c.3846G→A Exon 23 1 

Exon 2 Del* ----- Del exon 2  

1341+ 1G→A c.1209+1G→A Intron 9 -  Exon 10  

4382delA c.4251delA Exon 27  

R75X c.223C→T Exon 3 1 

G1265R c.3793G→A Exon 23  

R347P c.1040G→C Exon 8 4 

D1270N c.3808G→A Exon 23  

2221insA c.2089_2090insA Exon 14  

G542X c.1624G→T Exon 12 1 

Q1100P c.3299A→C Exon 20  

http://www.genet.sickkids.on.ca/MutationDetailPage.external?sp=246
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4.6 Confirmation of Identified Mutations by Sanger Sequencing 

 

Sanger sequencing was used to confirm the CFTR mutations identified by the NGS method. All 

the results obtained by the Sanger sequencing method were identical to the results of the NGS 

method. The sequences were analyzed using "SeqScape" program to identify the mutation site 

and type of mutation, some representative results are shown in Figures 8-11 Appendix II and all 

the confirmed mutations by Sanger method are shown in Table3 - Appendix I. 

 

 

4.7 Multiple Ligation-dependent Probe Amplification (MLPA) 

This method was used to detect any deletion in the CFTR gene especially to verify if this 

mutations occurs among the tested population, and also because deletions and insertions are 

often not detected by DNA sequencing (12/120 alleles).Twelve alleles with 2 different kinds of 

deletion mutations (exon 2 deletions and 3120+1Kbdel8.6Kb{deletion of exons 19, 20 and 21}) 

were detected which proves that this test is really relevant. All results are shown in Table 3 - 

Appendix I, and some of the interpretations of the results are shown in figures 18-21 - Appendix 

II. 
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4.8 Mutational Spectrum of Cystic Fibrosis 

 

As a result of this research and from all the data gathered by the previous methods, Table 9 

shows the frequency of different mutations among Palestinians residing in Gaza and West Bank, 

other graphs to clarify the difference between the patients originated from Gaza and those from 

the West Bank are shown in Figure 12 below and Figures 22 and 23 - Appendix II.  

 

 

Figure 12: A chart showing the prevalence rates of different mutations in Palestine 
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Table 9: Frequency of CF mutations among Palestinians in Gaza and West Bank. 

 

 

4.9 Allele Specific Mutation Analysis (ASMA) 

In order to identify the 8 most frequent CFTR mutations present in the Palestinian population 

representing 80% of the mutations present, we designed a relatively easy method using the 

ASMA technique (Table 6). This method allows us to have a simple and an easy to perform 

molecular diagnostic test for CF which can be adopted without the need for more sophisticated 

sequencing equipments. Figures 16 and 17 show the capillary electrophoresis results for two 

different mutations detected by this ASMA method, and Table 3 - Appendix I shows all the 

results derived from this method.   

 

No. 

 

Mutation 

Mutated Alleles Percentage  

Total 

%  
W.B Gaza Total W.B Gaza Total 

1 ∆F508 9 19 28 11.2% 23.8% 35% 35 % 

2 Exon 19,20,21 Del 1 8 9 1.2% 9.8% 11% 46 % 

3 1525- 1G→A 7 0 7 9% 0% 9% 55 % 

4 G85E 6 0 6 7% 0% 7% 62 % 

5 2183AA→G 0 4 4 0% 5% 5% 67 % 

6 1717-1G→A 0 4 4 0% 5% 5% 72 % 

7 N1303K 3 0 3 4% 0% 4% 76 % 

8 W1282X 3 0 3 4% 0% 4% 80 % 

9 Exon 2 Del 2 1 3 2.7% 1.3% 4% 84 % 

10 1341+ 1G→A 0 2 2 0% 2% 2% 86 % 

11 4382delA 0 2 2 0% 2% 2% 88 % 

12 R75X 0 2 2 0% 2% 2% 90 % 

13 c.3793G→A 0 2 2 0% 2% 2% 92 % 

14 R347P 0 2 2 0% 2% 2% 94 % 

15 D1270N 0 1 1 0% 1% 1% 95 % 

16 2221insA 0 1 1 0% 1% 1% 96 % 

17 G542X 0 1 1 0% 1% 1% 97 % 

18 Q1100P 1 0 1 1% 0% 1% 98 % 
 Total 32 49 81   100%  
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Chapter 5 

 

Discussion 

 

This study was conducted on 73 patients (60 unrelated) residing in the West Bank and Gaza, 

Palestine who were diagnosed with cystic fibrosis. The aim of this study was to determine the 

types and rates of mutations present in the CFTR gene and to develop allele specific mutation 

analysis method that can be useful in identifying the most common mutations among 

Palestinians and can be utilized for proper and rapid diagnosis of CF. 

The nature and distribution of the CFTR gene mutations among the Palestinian population is 

different from mutations reported in neighboring and regional countries such as Jordan, Lebanon, 

Egypt, Tunis, Algeria, Turkey, Iran and Israel [35-44]. It is apparent that the spectrum and rate of 

the various CFTR gene mutations varies significantly between these countries. 

 The most common five mutations identified in the tested samples represent 72% of all mutations 

detected. Specifically, ΔF508 (28/81) at a rate of 34.6%, followed by the deletion of exons 19, 20 

and 21 (3120+1Kbdel8.6Kb), 1525- 1G→A, G85E, 2183AA→ G and 1717-1G→ A at rates of 

11.1% (9/81), 8.6 % (7/81), 7.4 % ( 6/81), 4.9% (4/81) and 4.9% (4/81) respectively. 

The types of the CFTR gene mutations detected among Palestinian population were; missense 

mutations 33 % (6/18), non-sense mutations 16.5% (3/18) and splicing error mutations 16.5 % 

(3/18). Comparing our results with the most common mutations reported worldwide where 

missense mutations were higher than ours (48.7 %), while the nonsense mutations and splicing 

error mutations were (12.9%) and (15.7%) respectively similar to the results obtained by us[14]. 
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This is the first study to address the prevalence of CFTR gene mutations in Palestine. There is a 

lack of published literature regarding this subject. However, a study conducted in Israel by 

Laufer-Cahana et al on mutations among Israeli Arab patients showed similar rates for mutations 

G85E ( 8%), 2183AA→ G (8%), deletion of exons 19,20 and 21(3120+1Kbdel8.6Kb) (13%). 

These results are in agreement with results obtained in our study. Interestingly, the deletion of 

exons19, 20 and 21(3120+1Kbdel8.6Kb) was only found among Palestinian Arabs which may 

indicate that this mutation is a founder mutation among this population [33,45].The rate of 

ΔF508 in the Israeli study was much lower (23.5%) than our results although it was the most 

common mutation in both studies [28]. 

A study conducted in Israel by Quint et al (2005) on Jewish CF patients living in Israel reported 

that W1282X mutation was the most common (43%) compared to (4%) among Palestinian 

population tested in this study. However, ΔF508 was the second common mutation among 

Jewish CF patients (33.5 %) similar to the rate identified in this study among Palestinians (35%). 

Moreover, the G542X mutation was more common among Jewish CF patients (10 %) as 

compared to (1%) among Palestinian CF patients while1717-1G → A mutation was more 

common among Palestinians (5%) as compared to (1%) among Jewish CF patients. The rate of 

N1303K mutation was about the same in both populations (5%). Interestingly the G85E mutation 

was only among Balkan Jews (Turkish and Greeks) at a rate of (9.5 %) which is similar to the 

rate found in this study (7 %) [44].  

It was notable the presence of differences in the rates of mutations identified in patients residing 

in the West Bank versus those residing in Gaza. For example mutations 1525- 1G→A, G85E, 

W1282X and N1303K were only found (100%) among Palestinians residing in the West Bank, 

while mutations 2183AA→ G, 1717-1G→ A were only found among Palestinians residing in 
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Gaza. It was interesting to observe that ΔF508 mutation was primarily prevalent among patients 

living in Gaza (68%) as compared to patients living in the West Bank (32%). This may be due to 

heterogeneous Arab population screened and /or geographical distribution of the patients tested, 

and the limitations of freedom of movement due to Israeli occupation. 

Interestingly, we identified a new CF mutation for the first time in the CFTR gene in an 8 years 

old male child from Gaza. This mutation has not been reported in the literature and hence can be 

considered to be the first ever reported. This is a homozygous missense mutation located in exon 

23 in which the nucleotide Guanine is replaced by Adenine (c.3793G→A), and on the protein 

level it is altering the amino acid Glycine to Arginine (p.Gly1265Arg). More investigations 

should be held to understand the influence and the class of this mutation to recognize its 

pathogenicity. 

It was also significant that our findings indicated the presence of mutations in 81 alleles for the 

60 patients tested. It is expected to find a total of120 mutations corresponding to the 120 alleles 

present in the tested patients. Interpreting our results indicates that there are 40 patients with two 

identified mutations (80 alleles), 33 of these patients had homozygous mutations on both alleles 

while the remaining 7 patients were compound heterozygous,  and one patient had only one 

mutation on one allele (even heterozygous). Since we tested all CFTR gene exons with more 

than one method including sequencing, and ultimately confirmed the findings with various 

methods that are highly sensitive and specific, this may lead us to presume the presence of 

misdiagnosis. The rate of patients who had no mutations detected was about 32.5 % (19.5/60). 

This can be partially explained by the lack of precision and / or quality control measures 

followed by local laboratories in the West Bank and Gaza. Additionally, the physicians here may 

rely only on the results of the sweat test to diagnose this disease. We compared known results 
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reported for 15 patients with INNO-LIPA and sequencing and found an error rate of 40 % (8/20) 

as shown in Table 7. Such high rate of errors confirms our doubts of the presence of 

misdiagnosis on one hand and the erroneous reporting of mutations on the other. However, at the 

beginning of this project it was not clear if the 36 mutations detected by this test are 

representative for the CF mutations in the Palestinian population. It was found that 8 of the 18 

mutations identified among the Palestinian population can be detected using INNO-LIPA test, 

and these 8 mutations represent 66 % of the mutations identified among this population as shown 

in Table 4 – Appendix I.    

 This may explain the controversies encountered between our results and those conducted by 

local laboratories as well as the absence of mutations in many of the CF patients tested. 

We observed the presence of significant difference in the amount of DNA extracted from samples 

stored at -80 ºC as compared to those stored at -20 ºC by independent 2-tailed T – test (SPSS 17) 

at 95% level of significance (P value< 0.05). 

In conclusion, this study indicated that the most common mutation encountered among 

Palestinian people is the ΔF508. In addition, the deletion mutation of exons 19, 20 and 

21(3120+1Kbdel8.6Kb) appears to be an unusual mutation that seems to be a founder mutation 

among Palestinian population. Furthermore, a new mutation has been identified on exon 23 

(G1265R) of the CFTR gene in an 8 year old child from Gaza. 

It was apparent in this study the presence of a considerable misdiagnosis among CF population 

in the West Bank in general and Gaza in particular. A high rate of errors has been encountered 

throughout this study due to inaccurate screening tests performed by local laboratories. These 

discrepancies in the identification of the mutations on the CFTR gene could be attributed to 
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misdiagnoses of patients. Molecular characterization of the CF patients in Palestine was 

unsuccessful. Therefore, the data obtained failed to contribute to the establishment of a 

comprehensive database for all the mutations found in the CFTR gene among this population. 

INNO-LIPA was an alternative molecular testing method used to identify the existing mutations 

in the CFTR gene. This molecular diagnostic method was partially successful since it can 

identify about half (8/18) the mutations that occur among this population. To get a more 

comprehensive spectrum of the predominant CF mutations present in the Palestinian population, 

allele specific mutation analysis method was modified to identify about 80% of the mutations. 
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Chapter 6 

 

         Recommendations 

 

 

1- The Palestinian Ministry of Health must implement specific criteria to be followed by 

physicians in the diagnosis of CF patients. 

2- The criteria for CF diagnosis must not relay on symptoms and sweat test only. 

3- Screening tests should be performed especially for families with CF history.  

4- Molecular characterization and mutation analysis should be implemented in the 

diagnosis procedure.  

5- Extensive molecular techniques must be used to identify all possible mutations that 

could be present in the Palestinian CF patients. 

6- A comprehensive database must be established to hereditary diseases commonly 

found among Palestinian population including CF. 

7- The relationship between the CFTR gene mutations and the course of the disease 

should be evaluated in order to provide better management and treatment for the CF 

patients.   
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Appendix I 

Table 1: Primers used in CFTR Assays 

 

CFTR 

Assay 

# 

Exon 

# 
Forward Primer Reverse Primer 

Amplicon 

Length 

3 1 GAAAGCCGCTAGAGCAAA CCAAACCCAACCCATACA 419 

4 2 GCCTGTAAGAGATGAAGCCT CCACCATACTTGGCTCCTAT 435 

5 3 TCTGGCTGAGTGTTTGGT TGGTTTCTTAGTGTTTGGAGTTG 448 

6 4 TTGTGTTGAAATTCTCAGGGTAT CTTGTACCAGCTCACTACCTA 414 

7 5 CAACTAGAAGCATGCCAGTAT TAATTACTATTATCTGACCCAGGAA 428 

8 6 AGAACCACGAAGTGTTTGA CACTGAAGATCACTGTTCTATGC 427 

9 7 AGGCTGTCATAAGGGATAGAG AGGTGGAAGTCTACCATGA 481 

10 8 TCCATTCCAAGATCCCTGATA CCATCATACTGTCCAGAGAAA 550 

11 9 AGATGTAGCACAATGAGAGTAT TGGCCATTCCTCTACTTCTTA 388 

12 10 TCCTCTAGAAACCGTATGCT CTTCCAGCACTACAAACTAGA 483 

13 11 CTTCTGCTTAGGATGATAATTGG GCTTACCCATAGAGGAAACA 436 

14 12 TCAACTGTGGTTAAAGCAATAG GATTCTTAACCCACTAGCCATA 391 

15 13 TCTACACTAGATGACCAGGAA GAGAAACTGGTTTAGCATGAG 410 

16 14 CTATCAGAATTCACAAGGTACCAAT AGAGTTGATTGGATTGAGAATAGAA 573 

17 14 GTCTCCTGGACAGAAACAA TTTAAGATACACCTTATCCTAATCCT 616 

18 15 CCACAATGGTGGCATGAAA AGTAGTGGTTCTACTTGTTGATT 480 

19 16 GGGAGGAATAGGTGAAGATG CTGCACATGCTCACAATTTA 486 

20 17 AAGGGTGCATGCTCTTCTA TGATGGTGGATCAGCAGTT 459 

21 18 TTCTAAGTCTATCTGATTCTATTTG GGGATTGCCTCAGGTTTG 477 

22 19 CACTGACACACTTTGTCCAC CCATGTGTACTTTGTAATATAGTTTCCT 436 

23 20 AGAATGGCACCAGTGTGAA GGAAATTCAAAGAAATCACTTGTTC 572 

24 21 GCCCTAGGAGAAGTGTGAATA GAATGCTCACTGCAGTATTAGAT 438 

25 22 GTGAAATTGTCTGCCATTCTTAAA GGTTCAGGACTCTGCAAATTAAA 527 

26 23 TCCACTGGTGACAGGATAAA AAAGACAGCAATGCATAACAAAT 432 

27 24 CAAGGGACTCCAAATATTGCT AGCCATTTGTGTTGGTATGAG 405 

28 25 TTCAAATGGTGGCAGGTAGT TCTGTTCCCACTGTGCTATT 395 

29 26 AAGAAGTACTGGTGATTCTACAT AGAATTACAAGGGCAATGAGAT 456 

30 27 GTCTGACCTGCCTTCTGTC AGACCCATATCAGTGTCCTC 466 
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Table 2: Extraction & DNA Quality Data 

 

Sample 

# 

Extraction 

method 

Blood 

Sample (ml) 

DHS 

added (µl) 

DNA  Conc. 

(ng/µl) 

DNA Weight 

(µg) 

Purity  

A260/A280 

OE - 1 1 1 100 790 79 1.79 

OE - 2 1 1 100 640 64 1.77 

OE - 3 1 1 100 432 43.2 1.73 

OE - 4 1 1 100 504 50.4 1.69 

OE - 5 1 1 100 851 85.1 1.79 

OE - 6 1 1 100 961 96.1 1.75 

OE - 7 1 1 100 366 36.6 1.75 

OE - 8 1 1 100 143 14.3 1.71 

OE - 9 1 1 100 443 44.3 1.78 

OE - 10 1 1 100 730 73 1.8 

OE - 11 1 1 100 537 53.7 1.67 

OE - 12 1 0.8 100 1046 104.6 1.8 

OE - 13 1 1 100 339 33.9 1.69 

OE - 14 1 1 100 763 76.3 1.81 

OE - 15 1 1 100 836 83.6 1.81 

OE - 16 1 1.4 100 1409 140.9 1.89 

OE - 17 1 1 100 571 57.1 1.79 

OE - 18 1 1 100 790 79 1.76 

OE - 19 1 1 100 1167 116.7 1.73 

OE - 20 1 1 100 443 44.3 1.79 

OE - 21 1 1 100 262 26.2 1.65 

OE - 22 1 1 100 738 73.8 1.82 

OE - 23 1 1 100 1266 126.6 1.9 

OE - 24 1 1 100 667 66.7 1.72 

OE - 25 1 1 100 410 41 1.69 

OE - 26 1 + 2 1 + 0.2 100 549 54.9 1.69 

OE - 27 1 + 2 0.7 + 0.2 100 495 49.5 1.69 

OE - 28 1 1 100 2131 213.1 1.45 

OE - 29 1 1 100 90 9 1.71 

OE - 30 1 1 100 279 27.9 1.7 

OE - 31 1 2 35 87 3.045 1.61 

OE - 32 1 + 2 0.4 + 0.2 35 142 4.97 1.54 

OE - 33 1 + 2 0.8 + 0.2  201 0 1.66 

OE - 34 2 0.2 40 Q A 0 0 

OE - 35 1 + 2 0.8 + 0.2 35 114 3.99 1.73 

OE - 36 1 + 2 1.1 + 0.2 35 158 5.53 1.66 

OE - 37 1 + 2 1 + 0.2 40 199 7.96 1.6 

OE - 38 1 + 2 1 + 0.2  145 0 1.73 

OE - 39 2 0.2 100 QA 0  
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Sample 

# 

Extraction 

method 

Blood 

Sample (ml) 

DHS 

added (µl) 

DNA  Conc. 

(ng/µl) 

DNA Weight 

(µg) 

Purity  

A260/A280 

OE - 40 1 + 2 0.7 + 0.2 80 98 7.84 1.62 

OE - 41 1 + 2 0.8 + 0.2  100 0 1.61 

OE - 42 2 0.2 80 QA 0 0 

OE - 43 1 + 2 0.4 + 0.2 100 70 7 1.54 

OE - 44 1 1 100 177 17.7 1.62 

OE - 45 1 1 80 591 47.28 1.72 

OE - 46 1 + 2 0.8 + 0.2 100 131 13.1 1.65 

OE - 47 1 1 40 755 30.2 1.79 

OE - 48 1 + 2 0.6 + 0.2 80 118 9.44 1.7 

OE - 49 1 1 100 54 5.4 1.76 

OE - 50 1 2 200 599 119.8 1.61 

OE - 51 1 2 200 139 27.8 1.8 

OE - 52 1 2 100 107 10.7 1.8 

OE - 53 1 2.2 100 564 56.4 1.72 

OE - 54 1 1 200 76 15.2 1.73 

OE - 55 1 2 100 214 21.4 1.46 

OE - 56 1 2.5 200 569 113.8 1.66 

OE - 57 1 2 220 77 16.94 1.76 

OE - 58 1 2 200 61 12.2 1.81 

OE - 59 1 2 200 96 19.2 1.8 

OE - 60 1 2 200 28 5.6 1.66 

OE - 61 1 2 100 40 4 1.75 

OE - 62 1 1 200 147 29.4 1.69 

OE - 63 1 2 250 435 108.75 1.49 

OE - 64 1 2 250 48 12 1.76 

OE - 65 1 2 200 108 21.6 1.82 

OE - 66 1 2 30 171 5.13 1.81 

OE - 67 1 2 100 320 32 1.63 

OE - 68 1 2 100 64 6.4 1.76 

OE - 69 1 2 100 36 3.6 1.72 

OE - 70 1 2 100 38 3.8 1.69 

OE - 71 1 1 100 200 20 1.81 

OE - 72 1 2 30 157 4.71 1.81 

OE - 73 1 2 30 248 7.44 1.48 
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Table 3: Identified and Confirmed Mutation by Different Methods 

 Sample NGS InnoLipa Heteroduplex ASMA Sanger Seq. MLPA 

OE – 1
* 

∆F508  ∆F508  ∆F508  

OE – 2
* 

∆F508  ∆F508    

OE – 3 c.1209+1G→A N.D   c.1209+1G→A  

OE – 4 ∆F508 ∆F508 ∆F508    

OE – 5 N.D  N.D   N.D 

OE – 6 N.D  N.D   N.D 

OE – 7 4382delA    4382delA  

OE – 8 N.D      

OE – 9
* 

2183AA→G 2183AA→G  2183AA→G   

OE – 10
* 

2183AA→G   2183AA→G 2183AA→G  

OE – 11 ∆F508  ∆F508  ∆F508  

OE – 12 Del exons 19,20,21   Del ex 19,20,21  Del ex19,20,21 

OE – 13 ∆F508 ∆F508 ∆F508    

OE – 14 N.D  N.D   N.D 

OE – 15 R75X   R75X R75X  

OE – 16 N.D  N.D   N.D 

OE – 17 N.D  N.D   N.D 

OE – 18 c.3793G→A N.D   c.3793G→A  

OE – 19 ∆F508 ∆F508 ∆F508  ∆F508  

OE – 20
1 

D1270N    D1270N N.D. 

OE – 21 ∆F508 ∆F508 ∆F508  ∆F508  

OE – 22 Del exons 19,20,21   Del ex 19,20,21  Del ex 19,20,21 

OE – 23 Del exons 19,20,21   Del ex 19,20,21  Del ex 19,20,21 

OE – 24
2 

∆F508/2221insA  ∆F508  ∆F508/2221insA  

OE – 25 ∆F508  ∆F508    

OE – 26
2 

∆F508  ∆F508   Del ex 2/∆F508 

OE – 27
* 

2183AA→G   2183AA→G 2183AA→G  

OE – 28
* 

2183AA→G   2183AA→G 2183AA→G  

OE – 29
* 

1717- 1G→A    1717- 1G→A  

OE – 30
* 

1717- 1G→A      

OE – 31 N.D  N.D   N.D 

OE – 32
2 

∆F508/G542X ∆F508/G542X ∆F508    

OE – 33 ∆F508 ∆F508 ∆F508    

OE – 34 N.D  N.D   N.D 

OE – 35 1717- 1G→A    1717- 1G→A  

OE – 36 N.D.  N.D   N.D 

OE – 37 R347P R347P  R347P R347P  

OE – 38 N.D.  N.D   N.D 
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N.D Means a Negative Test 

Samples indicated by * are Family members  

Sample indicated by 
1 

is the even Heterozygote   

Samples indicated by 
2 

are Heterozygote CF Patients  

Sample NGS InnoLipa Heteroduplex ASMA Sanger Seq. MLPA 

OE – 39 N.D.  N.D   N.D 

OE – 40 N.D.  N.D   N.D 

OE – 41 Del ex 19,20,21   Del ex 19,20,21  Del ex 19,20,21 

OE – 42 N.D.  N.D   N.D 

OE – 43 N.D.  N.D   N.D 

OE – 44 N.D.  N.D   N.D 

OE – 45 N.D.  N.D   N.D 

OE – 46 N.D.  N.D   N.D 

OE – 47 N.D.  N.D   N.D 

OE – 48 N.D.  N.D   N.D 

OE – 49 N.D.  N.D   N.D 

OE – 50 1525- 1G→A N.D.   1525- 1G→A  

OE – 51
* 

N.D.     Del ex 2 

OE – 52
* 

N.D.     Del ex 2 

OE – 53 N1303K / G85E N1303K/G85E  N1303K / G85E   

OE – 54 N.D  N.D   N.D 

OE – 55 N.D  N.D   N.D 

OE – 56 ∆F508 ∆F508 ∆F508  ∆F508  

OE – 57 1525- 1G→A   1525- 1G→A 1525- 1G→A  

OE – 58 ∆F508  ∆F508    

OE – 59
2 Del19,20,21/F508  ∆F508 Del ex 19,20,21  Del19,20,21/F508 

OE – 60 ∆F508  ∆F508    

OE – 61 N1303K   N1303K N1303K  

OE – 62 ∆F508  ∆F508    

OE – 63 N.D  N.D   N.D 

OE – 64
* 

1525- 1G→A    1525- 1G→A  

OE – 65
* 

1525- 1G→A   1525- 1G→A   

OE – 66
2 W1282X /1525- 1G→A   W1282X /1525- 1G W1282X /1525- 1G  

OE – 67
* 

G85E   G85E G85E  

OE – 68
* 

G85E   G85E   

OE – 69
* 

G85E   G85E   

OE – 70
2 

G85E  / Q1100P   G85E G85E  / Q1100P  

OE – 71 G85E   G85E   

OE – 72 N.D.  N.D   N.D 

OE – 73 W1282X   W1282X W1282X  
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Table 4: Mutations detected by INNO-LIPA CFTR 19 & 17 (36 Mutations) 

 

INNO-LiPA CFTR19 INNO-LiPA CFTR17+ Tn 

∆F508
* 

621 + 1 G → T 

G542X 3849 + 10Kb C → T 

N1303K
* 

2183 AA → G
* 

W1282X
* 

394del TT 

G551D 2789 + 5 G → A 

1717 – 1 G → A
* 

R1162X 

R553X 3659del C 

CFTR dele 2,3
* 

R117H 

I507del R334W 

711 + 1 G → T R347P
* 

3272 – 26 A → G G85E
* 

3905 insT 1078 del T 

R560T A445E 

1898 + 1G → A 2143 del T 

S1251N E60X 

I148T 2184 del A 

3199del6 711 + 5 G → A 

3120 + 1G → A  

Q552X  

 

Mutations indicated by * are those that were identified among the Palestinian population and can 

be detected by the INNO-LIPA 
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Appendix II 

 

 

 

           Figure 1: DNA Quality Test 
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           Figure 2: INNO-LIPA CFTR 17 + Tn Strips. 
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           Figure 3: INNO-LIPA CFTR 19 Strips. 
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Figure 4: ΔF508 Heteroduplex Analysis 

The bands in the figure above indicate the heterozygotes of ΔF508  
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 Figure 5: ΔF508 Heteroduplex Analysis 

A mixture experiment to detect homozygotes for ΔF508, in the figure above the bands indicate the heterozygotes and homozygotes of ΔF508 
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Figure 6.1: PCR of all assays 
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Figure 6.2: PCR of all assays 
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Figure 7: PCR optimizing for assays 16,18,22 
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Figure 8: Print screen of "Seqscape" program confirming homozygous F508 mutation on the patient OE - 1  
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Figure 9: Print screen of "Seqscape" program confirming homozygous c.3793G>A mutation on the patient OE - 18  
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Figure 10: print screen of "Seqscape" program confirming heterozygous G85E mutation in patient OE - 70  
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Figure 11: Print screen of "Seqscape" program confirming heterozygous Q1100P mutation in patient OE - 70  
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 Figure 12: Print screen of "Miseq" result indicating homozygous ΔF508 mutation  
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Figure 13: Print screen of "Miseq" result indicating heterozygous ΔF508 mutation 
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Figure 14: Print screen of "Miseq" result indicating homozygous 1525- 1G>A mutation 
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Figure 15: W1282X mutation; optimizing Allele specific mutation analysis conditions this bands were derived using CF 55 PCR 

program, form the figure it is obvious that using the Reverse primer to detect this mutation is better than using the Forward primer.  
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Figure 16:  3120+1Kbdel8.6Kb mutation ;  this result shows that patients OE- 12, 22,23 and 41 have this deletion in their 

CFTR gene and the patient OE- 43 do not carry this mutation. 
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Figure 17:  2183AA>G mutation ;  this result shows that patients OE- 10,27,28 are homozygous for this mutation and  patient OE-

34 is heterozygous for the mutation, and finally OE- 8 and the control do not have this mutation. 
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Figure 18: MLPA result for patient OE-12 showing a homozygous carrier of 3120+ 1Kbdel8.6Kb mutations (Del of exons 19, 20, 21). 
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Figure 19: MLPA result for patient OE-26 showing a heterozygous carrier of Del 2 mutation (deletion of exon 2) and ΔF508. 
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Figure 20: MLPA result for patient OE-51 showing a homozygous carrier of Del 2 mutation (deletion of exon 2). 
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Figure 21: MLPA result for patient OE-59 showing a heterozygous carrier of 3120+ 1Kbdel8.6Kb mutations (Del of exons 19, 20, 21). 
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Figure 22: A chart showing the prevalence rates of different mutations in Gaza  
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Figure 23: A chart showing the prevalence rates of different mutations in the West Bank 
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